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J. Phys. A: Math. Gen. 17 (1984) 1235-1245. Printed in Great Britain 

Derivative nonlinear Schrodinger equations and Hermitian 
symmetric spaces 

Allan P Fordyt 
Department of Mathematics, UMIST, PO Box 88, Manchester M60 lQD, UK 

Received 23 June 1983 

Abstract. I t  is shown that to each Hermitian symmetric space there corresponds an 
integrable system of generalised derivative nonlinear Schrodinger equations (DNLS). The 
nonlinear terms are related to the curvature tensor of the associated symmetric space. The 
Hamiltonian form of these equations is presented. These results are an extension of those 
presented in an earlier paper on generalised NLS equations associated with symmetric and 
reductive homogeneous spaces. 

1. Introduction 

The nonlinear Schrodinger equation (NLS) 

iqt = q x x  + %*q2 (1 . lu)  

and its derivative form (DNLS) 

i4, = 4xx +2i(q*q2), ( l . l b )  

have important applications in such fields as plasma physics and nonlinear optics, and 
are well known to be completely integrable Hamiltonian systems. There exist vector 
generalisations of each of these equations: 

iq,, = 4 , x x  + 2 c 4 h 4 ,  i4,t = 4 j x x  + 2i( 4:4*41) (1.2a, 6) 

which are also soluble by means of the inverse scattering technique. The appropriate 
linear scattering problems are respectively: 

n 

k = l  

t Present address: School of Mathematics, University of Leeds, Leeds, UK. 

( 1 . 3 ~ )  

(1.3b) 
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1236 A P Fordy 

When n = 1 these eigenvalue problems correspond to the single component equations 
(1.1) and were respectively discovered by Zakharov and Shabat (1972) and Kaup and 
Newel1 (1978). 

It is well known that equations (1.2) are associated with complex projective space 
CP" = SU( n + l ) / (S(U( 1) XU( n))), as is evident from the form of the matrices in (1.3). 
It was recently pointed out (Fordy and Kulish 1983) that the form of the multicom- 
ponent NLS equation (1.2a) is very closely related to the symmetric space CP". This 
symmetric space is Hermitian and it is this feature which was exploited in the above 
cited paper. 

For each Hermitian symmetric space G / K  there is a very special element A of 
the Cartan subalgebra of 9. The Lie algebra f of K is given by f = C,(A) = 
{ B E 9: [A, B ]  = O}. In the above paper the linear problem (1.3a) was generalised by: 

where Q(x, t )  E T,, ,(G/K) =tangent space to G / K  at point po. The second-order 
isospectral flow of (1.4) has cubic interaction term and the coupling coefficients are 
just the components of the Riemann curvature tensor of G / K .  This is a direct 
generalisation of (1.2a), so these equations are generalised NLS equations. 

In the present paper the corresponding generalisation of (1.3b) is considered: 

The second-order flow of (1.5) is now a generalisation of the DNLS equation (1.2b). 
The coupling coefficients are still the components of the Riemann tensor, but this time 
the interaction term is the derivative of a cubic nonlinearity. These equations have 
Hamiltonian form (3.13) given in terms of invariant quantities associated with the 
symmetric space. As with ( l . l b ) ,  the Hamiltonian structure is not canonical, but is a 
constant matrix multiple of d/dx. This matrix is the inverse of the metric tensor at 
point Pa of the symmetric space G / K .  

Homogeneous and symmetric spaces have often appeared in the literature, mainly 
in the context of nonlinear sigma models and chiral fields. Some of this literature 
discusses the existence of Lax pairs for these systems (Zakharov and Mikhailov 1978, 
Eichenherr and Pohlmeyer 1979, D'Auria et a1 1980, Eichenherr and Forger 1981). 
However, these authors have not found a close relationship (such as in (3.12)) between 
the nonlinearity and the curvature tensor. It is possible that if some of these calculations 
were reworked, such a relationship could be derived. 

Section 2 reviews some mathematical preliminaries concerning Lie algebras and 
symmetric spaces. Section 3 derives the general results concerning DNLS equations 
associated with Hermitian symmetric spaces. Examples will be found in § 4. 

2. Mathematical preliminaries 

In this section we state a number of relevant facts concerning simple Lie algebras and 
symmetric spaces. Irreducible symmetric spaces are classified in terms of simple Lie 
algebras, so we have no need of anything more general in this paper. We give the barest of 
details. The full theorycan be found in (Helgason 1978, Humphreys 1972, Kobayashi and 
Nomizu 1969). 



Derivative nonlinear Schrodinger equations 1237 

2.1. Simple Lie algebras; Cartan-Weyl basis 

In terms of the Cartan-Weyl basis a complex, simple Lie algebra g has the following 
commutation relations (Helgason 1978, Humphreys 1972) 

6) [hi, h,l=O Vhj, hjEIj 

(ii) [h, e,]  = a ( h ) e ,  VhEI), U E 0 

(iii) [e, ,  e- ,]  = h, = dyik 
1 

1=1 

It will be necessary to explain some of the terms. 
(a) Ij is the Cartan subalgebra, which is the maximal Abelian subalgebra of 

diagonalisable elements of g. Ij has basis { h i } :  and d,, are the components of [e,, e- , ]  ~ f )  
with respect to this basis. The number I is the rank of the algebra. 

(b) Q : Ij + d= are linear functionals called roots, on Ij and their values on some h E t, 
are the eigenvalues of the matrix ad h. The corresponding eigenvectors, e,, are called 
root vectors. The space of roots is called 0. 

are the most complicated part of these commutation 
relations. However, for the purposes of this paper their values are irrelevant. 

(c) The coefficients 

2.2. Hermitian symmetric spaces 

A homogeneous space of a Lie group G is any differentiable manifold M on which 
G acts transitively (Vp, ,  p2 E M, 3 g  E G / g  p1 = p 2 ) .  The subgroup of G which leaves 
a given point po E M fixed, is called the isotropy group at po and is defined by: 

K K ,  = { g  E G :  g * Po = Po}. 

It is a theorem that each such M can be identified with a coset space G / K  for some 
subgroup K and that this K plays the role of isotropy group of some point. There 
are many topological and differential geometric subtleties, but we have no need of 
them in this paper. We are only interested in the decompositions of the corresponding 
Lie algebras. 

Let g and f be the Lie algebras of G and K respectively, and let m be the vector 
space complement of f in g. Then 

g = f O m ,  [ f ,  € I =  f (2.2) 
and m is identified with the tangent space T,M of M = G / K  at point po. At the 
moment we have [ f ,  € 3 ~  f ,  but know nothing of [ f ,  m ]  and [m, m ] .  

When g satisfies the conditionst: 

g = f O m ,  [ f ,  f l c  f [ f ,  m I =  m, [m, m1C f (2.3) 
then g is called a symmetric algebra and G / K  is a symmetric space. These spaces 
have a metric structure which is given by the restriction of the Killing form to m. As 
usual, there exists a torsion free connection. Evaluated at fixed point po, the curvature 

t Helgason demands that f be compact. This corresponds to the metric being positive definite. 
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tensor is given purely in terms of the Lie bracket operation on m: 

( R ( X ,  Y ) Z ) ,  = - [ [ X  YI, ZI, X ,  Y , Z E m .  (2.4) 

The components R:kr of the curvature tensor with respect to a basis Xi  of T,M 

R(Xk, xr)xj = RjklX,. (2.5) 

are defined by: 

The corresponding metric is given by the Killing form 

g ( X ,  Y )  = Tr ad X ad Y, g,, = g(X , ,  3). (2.6) 

Tensorial indices are lowered and raised in the usual way by means of the metric tensor 
and its inverse. 

For spaces of constant curvature, the Riemann curvature tensor is related to the 
metric tensor in a simple way: 

where K is the constant Gaussian curvature. 
We are particularly interested in those symmetric spaces which have a complex 

structure. This is a linear endomorphism J :  m + m  satisfying J ’ = - l .  The vector 
subspace m must have even real dimension. Hermitian symmetric spaces are very 
special. For this paper, the most useful properties are algebraic: 

(i) 3A E tJ s.t. 
(ii) For a particular scaling of A, J = ad A 
(iii) 3 a subset f3+c C$+ of the positive root system s.t. 

f = Cg(A) ={BE g: [B, A] = 0) 

m =span{e,,},,,- and a ( A )  is constant on et. 
(iv) Following from (iii) [e,, e@] = 0 if a, p E 8’ or a ,  p E K. 

3. The linear problem 

Suppose the Lie algebra g is Hermitian symmetric (see (2.3) and (2.8)):  

g = f O m  (3.1) 
with f = Cg(A), A E 5. As before, m is identified with the tangent space T,(G/K) of 
the symmetric space G / K .  Choose a basis for which the Cartan subalgebra tJ is 
represented by diagonal matrices. 

Consider the linear equations: 

( 3 . 2 ~ )  

(3.2b) 

where Q ( x ,  t )  E m and S ( x ,  t ;  A )  E g. The integrability conditions of (3.2) are: 

A 0, = S,  - A [ Q, s] - A ’[A, SI. 

S(x, t ;  A )  = & ( X ,  I; A ) + s , , , ( x ,  t ;  A ) .  

(3.3) 

The matrix S may be decomposed in terms of (3.1): 

(3.4) 
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The integrability conditions ( 3 . 3 )  then decouple to give: 

AQ,=Smx-A[Q, Sk]-AZ[A, S m l  

Skx = A [ Q ,  S m I  
( 3 . 5 )  

where we have used [A, Sk] = 0 since S k  E C,(A). It is important to realise that the 
integrability conditions have been rendered very simple by the special properties of 
both a symmetric algebra (2 .3 )  and the constant element A. For an nth-order 
polynomial flow S = Z& S”’A’ and ( 3 . 5 )  decouples further into a system of equations 
for Sv’ and S;). These equations can be solved recursively, although the calculation 
is not quite so simple as for the NLS equation. The second-order flow is particularly 
easy to construct. 

3.1. The second-order flow S = Xp=o S‘”A’ 

It is convenient to make the following assumption: 

k m k  m k -0 ,  Si4’ constant. ( 3 . 6 )  SE’ = 9 3 ’  = S‘Z’ = Sfl) = S‘O’  = S(0’ - 

This assumption is in accord with the well known case ( 1 . 3 b ) .  Furthermore it is possible 
to invoke both the scaling and phase symmetry of ( 3 . 2 ~ )  to prove the necessity of 
( 3 . 6 ) .  Sufficiency is proved by the following calculation. 

We need to solve 

[ Q, Sp’] + [A, S‘,”] = 0 

[Q,S1;7)]=0 

slt,‘ = [ Q, S Z ’ ]  

SKj -[Q, S‘,‘’]-[A, S z ’ ] = O  

( 3 . 7 ~ )  

( 3 . 7 b )  

( 3 . 7 c )  

( 3 . 7 d )  

Q, = Sei. ( 3 . 7 e )  

The first four of these are used to construct S while the remaining equation is the 
evolution equation to be solved by inverse scattering. This evolution equation is locally 
defined only if the constant matrix Si4’ is chosen carefully. With S(k4) = A ,  ( 3 . 7 ~ )  
implies: 

( 3 . 8 )  

so that (3 .7b )  is identically satisfied. The solution of (3 .7c ) - (3 .7d )  is a little tricky. 
So as not to interrupt the main argument we just give the solution here, relegating 
the proof to an appendix. 

First, recall the decomposition (2 .8  iii). This means that there exist functions q u ( x ,  t )  
and p u ( x ,  t )  such that: 

[A, S‘,“ - Q]=O + SE’ = Q 

and that a ( A )  is a non-zero constant on e+; set a(A)  = a V a  E 0’. Then 

1 
a , , p e e  

sP’ = -- 
+ qupp[e , ,  e - p ]  
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(3.10) 

In order to decouple the evolution equations (3.7e), note the following: either 
a + p - y  is not a root or a + p - y E O + V a ,  p, y E O +  since ( a + p - y ) ( A ) = a .  This 
implies: 

>, 
1 

U E  E * q : e u = ( '  e a n e 8  C + q : e u - i  a P , Y . S E B  c + q ~ q ' p ~ e ~ , [ e , , e - ~ l  

(3.11) 

These equations can be decoupled even further by using the definition (2.4) of the 
Riemann curvature tensor. Using components (2.5) with respect to the basis { e + a } n e e - :  

(3.12) 

These equations have Hamiltonian form: 

aq: = g"-Pa 6H16pP,  up: = g-"@a 6 H 1 6 q P  (3.13) 

with 

(3.14) 

The summation convention has been used here and g,-@ is the metric tensor (2.6). 
To derive (3.12) from (3.13) it is necessary to use some of the algebraic identities of 
the Riemann tensor. 

Since in the corresponding Hermitian symmetric space the Riemann tensor has the 
property: 

(R;y -6 )*=RI; -y6  (3.15) 

we can set p n  = *(q")*  with a = i. The minus and plus signs correspond to the compact 
and non-compact forms respectively. Also in this case, the metric ga-@ is Hermitian, 
making the Hamiltonian operator: 

H =  -i( 2 gn-P(qnp': - q : p P ) + a - ' g p - u R g y - , p  a P y 6  4 4 P 1. 

(3.16) 

skew Hermitian. 

4. Classification and examples 

On page 518 of Helgason's book (1978) there is a table of symmetric spaces. Directly 
beneath this table those spaces which are Hermitian are listed. Following the abstract 
discussion of § 3 we now give examples of the linear problem (3.2a) and DNLS 
equations (3.12) associated with each of the Hermitian symmetric spaces. The matrix 
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S is easily calculated from the formulae of 0 3 and is left to the reader. 

SU(P + 4) 
W ( P )  xU(q) )  

A I11 

This example includes the case of the vector DNLS (1.2b). The linear problem is 
an equation in the Lie algebra su(p+q),  which is the compact real form associated 
with the root space Ap+q-l. When p = q = 2 we have: 

The choice of A makes a ( A )  = i in the top right-hand block. The first two components 
of the second-order flow are: 

(4.2) 

The second two are generated from (4.2) by the interchange 1-3 ,  2-4. There are 
then the four complex conjugate equations. 

Remark. The choice of compact real form su(p + q)  corresponds to setting pl = -4:. 
The noncompact real form su(p, q)  corresponds to p j  = q?. 

When p = 1 we are dealing with the usual vector NLS equation and the symmetric 
space is just complex projective space CPq. Since this is a space of constant curvature 
K we use (2.7) to obtain: 

and its complex conjugate. The metric is given by the Killing form (2.6) restricted to 
the symmetric space. However, the Killing form is proportional to the trace form in 
the fundamental representation. With respect to the root vector basis (which is not a 
coordinate basis) the metric is thus proportional to 8 p , - y ,  which gives the usual form 
of (4.3). 

CI Sp(n)lU(n)  

The compact group Sp(n) (sometimes called USp(2n)) of 2n X2n matrices which are 
both symplectic and unitary is associated with the root space C,. For the simplest of 
these n = 2. 

Notice that this is a reduction of (4.1) with q4= q2. The DNLS equations for this case 
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are given by (4.2) with the same reduction. In general: 

Sp(n) SU(2n) 
U(n)  S(U(n) xU(n)) 

and corresponds to each of the off-diagonal blocks being symmetric. The non-compact 
real form Sp(n, R )  corresponds to the choice pl = 4:. 

DIII S0(2n)/U(n) 

The orthogonal algebra so(2n) is the compact real form associated with the root 
space 0,. The general case is exemplified by the D4 linear problem. 

0 0 0 A41 h43 A46 

0 $ A 2  0 - A q 3  0 
0 i i h 2  0 

0 0 0 $ A 2  - A q 6  

0 AqT A4f A& 0 0 0 
- A q T  0 h4; A4; 0 -$ih2 0 0 

-A48 -h4; -hq: 0 0 0 4 8  

4 7  - h q f  -A4; 0 

(4.5) 

There are three basic equations 

(4.6) 

i43r=43xxf2i( 43 I f 5  c qj4T +4?(4144+424d) . 

Another three are obtained by making the interchanges 1 - 4 ,2  - 6 , 3  t, 5. The system 
is completed by complex conjugation. This is another reduction of the AI11 case: 

S U (  2n) c 
SO(2n) 

U(n)  S(U(n)xU(n)) 

this time corresponding to each of the off -diagonal blocks being anti-symmetric. 
Notice that q4= 45=46=0 is a consistent reduction. This corresponds to taking 

the subsystem D3 of D4. Furthermore, this reduction is identical to the 3-component 
vector DNLS equation. This corresponds to the isomorphism D3 = A3, leading to 

SO(6) SU(4) 

This symmetric space is only Hermitian when p = 2. In general so( p ) @ s o ( q )  has 
no centre. When p = 2 the so(2) subalgebra is the centre. Depending upon whether 
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Aq1 M 2  

-hqy 0 0 
-Aqf 0 0 

0 Aq; Aqf 
-Aq: 0 0 
-Aq% 0 0 

0 Aq3 Aq4 

(4.7) 

-Aq3 0 
-hq4 0 
-iA2 hqT hqf 
-hq, 0 0 
-hq2 0 0 

There are two basic equations 

Two more equations are obtained by the interchange 1 - 3, 2-4. There are then the 
complex conjugates of these four. 

4.1.  Exceptional algebras 

All the examples so far given have been associated with the classical Lie algebras. 
There are two Hermitian symmetric spaces E111 and EVII, associated with the excep- 
tional E-series. They possess respectively 16 and 27 independent complex potentials, 
qi, which would satisfy a corresponding system of generalised DNLS equations. These 
examples are left as an exercise for the reader. 

5. Conclusions 

This paper and its precursor (Fordy and Kulish 1983) have generalised the well known 
vector DNLS and NLS equations (1.2) to similar equations associated with arbitrary 
Hermitian symmetric spaces. The mixed single component NLS-DNLS equation of 
Wadati et a1 (1979a) can be similarly generalised in an obvious fashion. The slightly 
modified derivative nonlinear Schrodinger equation of Chen et a1 (1979): 

iq, = qxx + 2iqq*qx (5.1) 

has a linear problem (Dodd and Fordy 1983a, b) which is gauge equivalent to (1.3b) 
with n = 1. A multicomponent generalisation of (5.1) exists for each of the symmetric 
spaces encountered in this paper. The linear problem (3.2) is gauge transformed with 
an element of the subgroup K. 
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However, the more exotic generalisation of Wadati et a1 (1979b) seems to be 
restricted to the single component case. This will also be true of some of the other 
single component, complex equations found in Dodd and Fordy (1983b). 
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Appendix 

In this appendix we indicate the proof of (3.10). We need to solve (3.7c)-(3.7d): 

[A ,  S z ' ]  = Q, - [ Q, Si2' ]  

S"? = [ Q, S i ' ]  

( A l a )  

('41 b )  
Since the subalgebra f is spanned by [ e p ,  e - , ] ,  p, Y E  e+, there exist functions $2, 
such that: 

(A2) 

('43) 

(-44) 

9 2 )  = 9 2 '  e 

[a, Sk I - Skpyqol[ea? [ e p ,  e - , ] ] +  S ( ~ Z P ) , P ~ [ ~ - ~ ,  [ e p ,  e - , ] ]  

S i )  = a - ' ( q z e ,  - p z e - ,  + Slr2p),(qn[e,, ep, e - y ~ ~ - p u [ e - u ,  [e , ,  e - , ] ] ) )  

k p y [  0, 

Here and elsewhere in this appendix the summation convention is used. Therefore, 
( 2 )  - ( 2 )  

so that 

For S(k2P), to be locally defined, the right-hand side of (A1 b )  must be an exact derivative. 
There are two parts to this right-hand side: first 

( A 9  a- ' [q6e6  + p 6 e - , ,  q z e ,  - p : e - , ]  = - a - ' ( q P p y ) , [ e p ,  e - , ] .  

(A61 a skpy[qSe6 + p 6 e - , ,  q"[e,, e,, e - , I l -p"[e- , ,  [ep, e-,111 

(A6) requires some manipulation, using Jacobi's identities and [e6, [e , ,  [ e p ,  e - , ] ] ]  = 0. 
The latter follows from (2.8iv). Expression (A6) reduces to 

The second part is 
- 1  ( 2 )  

(A71 
- 1  (21 6 U 

a Skpy4 P [e69 e - , ] ]  
which vanishes provided a qppy (remember the summation convention). 
However, this proportionality is very reasonable, since it is implied b the scaling and 
phase symmetries. Furthermore, when (A7) vanishes ( A l b )  and (As)  

(A81 Si2)  = - a -  ' P Y  4 p [ep, e- , ]  

which is the solution (3.10). 
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